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1 LIMITE FINIE OU INFINIE A L'INFINI

1 Limite finie ou infinie a I'infini

1.1 Limite finie a I'infini

Defivitien | = Une fonction f a pour / 7

limite ¢ en +o09, si tout intervalle ouvert
contenant ¢, contient toutes les valeurs
de f(x) pour x assez grand - c’est & dire
pour x €]A; +oo[. On note alors :

lim f(x) =/

x——+o0

La droite A d’équation y = ( est dite asymptote horizontale a ¢7.

On définit de fagon analogue 1_i>m f(x) =4 avecx €] —o0; B].
X—r — 00

Remargue : Aussi petit que soit l'intervalle contenant /, il faut pouvoir trouver A.

- 1 1 1 ..
bXQMPle DX o X > el n € IN* et x — —— ont des limites nulles en + 0.

Vx

x — e a pour limite 0 en —oo.

Leurs courbes admettent alors la droite d’équation y = 0 (I'axe des abscisses)
comme asymptote horizontale.

1.2 Limite infinie a 'infini

Defivitien 2 :  Une fonction fa

pour limite +oco en 4o, si tout inter-
valle |M; +oo| contient toutes les va-
leurs de f(x) pour x assez grand - c’est
a dire pour x €]A; +oco[. On note alors :

lim f(x) = 4o0

X—r—+00
On définit de fagon analogue :

lim f(x) =+oo de |[M; +oo| vers | —oo; B[

X——00
xEwa(x) = —oo de | —oo; m| vers |A; +oof
Lim f(x) = —oco de | —oco; m| vers | —oo; B
X —00

Remargue : Aussi grand que soit M, il faut pouvoir trouver A.
Exemple : x+— x",n € N*, x> /x et x> e* ont pour limite +co en +oo.

x — x" a pour limite +0o0 en —oo si n est pair et —co en —oo si 1 est impair.
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1.3 LIMITES EN L'INFINI DES FONCTIONS DE REFERENCE

Une fonction peut tendre vers 4-co en +-co
de plusieurs facons. C’est le cas par exemple
des fonctions x — x2, x > x et x > \/x.

e x — x? tend « rapidement » vers l'infini.
La concavité est tournée vers le haut.

e x — x tend « moyennement » vers 1'infini.

Trois fagons de

tendre vers +oco
x2

Pas de concavité. VX
e x — /x tend «lentement » vers l'infini. R
La concavité est tournée vers le bas 0 -
1.3 Limites en 'infini des fonctions de référence
n 1 1 x ax
f(x) x = VX = e e
x" VX
. +ooa >0
x1—1>r—il:loof(x) oo 0 oo 0 oo 0a<O
. 00 1 pair non non 0a>0
xl—lgloof (%) —oo 71 impair 0 défini défini 0 4+o0a <0

2 Limite en un point

2.1 Limite infinie en un point

Deéfivition 2 : Une fonction f a pour limite

+oo en a, si tout intervalle |M;+oo| contient
toutes les valeurs de f(x) pour x assez proche de
a - c’est a dire pour les x d’un intervalle ouvert
contenant a. On note alors :

lim f(x) = +o0

X—a
La droite A d’équation x

verticale a %f

= a est dite asymptote

On définit de fagon analogue lim f(x) = —0 et
X a
On définit la limite a gauche ou a droitede x = a
& A |~ limite

lorsque la limite en x = a n’existe pas :

limite & gauche :  lim f (x) ou lim f(x)

x<a X—a—
limite a droite : 91;%21 f(x) ou XIEEL f(x)

. 1 .
La fonction x +— p n‘admet pas de limite en 0,

mais admet une limite a gauche et a droite de 0.

a droite

Limite
a gauche
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3 OPERATIONS SUR LES LIMITES

2.2 Limites en 0 des fonctions élémentaires

f(x)
xli>r(r)l+f(x)

—+o0

1
VX
—+o00

lim f(x)

x—0—

+0c0 n pair
—o00 1 impair

non défini

2.3 Limite finie en un point

Deéfivition 4 : Une fonction f a pour

limite  en a, si que tout intervalle ou-
vert contenant ¢ contient toutes les va-
leurs de f(x) pour x assez proche de a.
On note alors :

lim f(x) = ¢
Exemple : lim x2—1=23.
x—2

Une fonction peut ne pas étre définie et
admettre une limite en a.

. e¥ —1
Par exemple la fonction x 5 ]
, e s . X e —1
n’est pas définie en 0 mais : 2] Flx)y =
. et =1 *
lim =1 I
x—0 X [ ‘ | ‘ >
Taux d’accroissement de exp en 0. 3 -2 -1 0 12 3
A
. . , . 2 —
Remarque : Parfois la fonction f n’admet pas une li-
mite en a4, mais admet une limite a droite et une limite a 11 —t
gauche. C’est le cas de la fonction partie entiére E. On a | _
parexemple: lim E(x) =1 et lim E(x) =2 1 0
x—27 x—2F

3 Opérations sur les limites

Soit f et ¢ deux fonctions et a un réel ou £o0o. On note EI. une forme indéterminée

3.1 Somme de fonctions

chlgtlz f(x) /¢ ¢ { | 400 | —c0 | 400
. / o _ —
alclg}z g(x) V4 +o0 00 | +00 00 00
hin[f(x) +g(x)] | £+ | +o0 | —c0 | 400 | —oo | EIL
X—a
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3.2 PRODUIT DE FONCTIONS

Exemples : .
1) Limite en +oo de la fonction f définie sur R* par: f(x) = x +3 + o

Iim x+3 =40

x5 40 Par somme
1 ; _
lim = =0 Jm f(x) = oo
x—4o00 X

2) Limite en +oo et —co de la fonction f définie sur R par: f(x) = x> + x

lim x? = +o0
oy Par somme

; — lim f(x) = +o0
xl_lg—loox =t X_H_oof( )

lim x% = 4+
X——00

Iim x = —o0 Forme indéterminée : +0o — o0
X——00

3.2 Produit de fonctions

Par somme, on ne peut conclure

}Cgrlllf(x) /¢ {#0 0 00

. /

chlir}l g(x) 14 0 00 00
i ! * EL *
lim f(x)xg(x) | (x 0| o o

*Appliquer la régle des signes
Exemples :
1) Limite en —oo de la fonction précédente : f(x) = x? + x
Pour lever la forme indéterminée, on factorise f(x) par le terme prédominant :

1
flx) = x> +x = x? (1+;)
On a alors avec le produit :
lim x% = +oco

x5 —00 Par produit
lim 144 —1] Jm fx)=-+e
X—r—00 X

2) Limite en +oo de la fonction définie sur Ry par: f(x) = x — /x

Forme indéterminée, on factorise f(x) par le terme prédominant :
1
X)=x—Vx=x(1-—
fl) == Vi =x (1- )

Iim x = 4o

X—+00 Par produit
. 1 lim f(x) = +o0
x1—1>1:r|—100 1 _X =1 X—r 400

1
3) Limite a droite de 0 de la fonction définie sur R* par: f(x) = < sin x

JICIH(I) X oo Par produit, on ne peut conclure

x>0

lirr(l) sinx =0 Forme indéterminée 0 x oo
X—
x>0
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3 OPERATIONS SUR LES LIMITES

3.3 Quotient de fonctions

Jlgrlll f(x) 14 C#0 0 14 00 00
i ! (1) r (1)
]1(13}1 gx)| ¢/#0 0 0 00 14 o0
lim f(x) £ 00* EI 0 oo* EI
ag(x)] O
*Appliquer la régle des signes (1) doit avoir un signe constant
Exemples :
2x —1
1) Limite en —2 de la fonction définie sur R — {—2} par: f(x) = ;+ >
On détermine le signe de x + 2 x —0o0 -2 +o0
X +2 - 0 +
xll>rr_12 2x=1= =5 Par quotient
. _ —+ 1 = —
x21_112+x+2—0 x_ir_r;f(x) o
lim x4+2=0" [ lm f(x)=+co
x——2- Xx—=2
On en déduit alors une asymptote verticale d’équation x = —2.
. . g 2x +1
2) Limite en +oo de la fonction f définie par : f(x) = 312

. 7 . 7 w . P ’ .
Forme indéterminée : —. On factorise numérateur et dénominateur par le
(e/0]
terme prépondérant :

1 1
_2x+1_x(2+5> 2+

SN () R

lim 2+ 1 2| Par quotient
X—+00 X

On obtient alors : 2

lim 342 =3| [Mm fx)=3

_>
xX——+o0 X X—>too

3.4 Conclusion
I1 existe quatre formes indéterminées ou les opérations sur les limites ne per-
mettent pas de conclure. Dans les cas d'indétermination, on peut :

e mettre en facteur le terme prépondérant (pour les polyndmes et les fonctions
rationnelles) en l'infini,

e simplifier pour la forme zéro sur zéro en un point,

e multiplier par la quantité conjuguée (pour les fonctions irrationnelles),
e utiliser un théoreme de comparaison,

o effectuer un changement de variable ...
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4 Limite d'une fonction composée

Théoreme | : Soit deux fonctions f, g et a, b, ¢ des réels ou +oo.

lim f(x) = b
x—b

Exam;:les : Déterminer les limites suivantes :

1 lim 5 — 0| Parcomposition,ona:

1) lirJr: Cos (2—_'_1) . xoteoxt+1 i 1

X—>+0Q X . —

lim cos x = 1 e P\ 21
.1 .
) lim — = —oo | Par composition, ona:

2) lim ex: *70° % i 1 .

x—0~ . m ex —

XLHE,O ex =0 x—0~

1
On peut éventuellement faire un changement de variable en posant X = 7

) 1 ) X
lim ex = lim e* =1
x—0— X——o00

Théoreme 2 : Limites de fonctions et de suites

Soit une suite (u,) définie par : u, = f(n). f est alors la fonction réelle associée a
la suite (u,,). Soit a un réel ou +oo.

li = li =
A =a = Lip =

1
Exem;:le : Soit la suite (u,) définie pour toutn € IN* par: u, = /2 + e

1
Soit f la fonction définie sur |0; +-oo[ par: f(x) = 4/2+ 2
lim 2+ lz = 2| Par composition
X—>+00 X y - \/E = lim Uy = \/E
limvr=v2 | ARS0= e
X—r

Remargue : Lalimite de f est transmise a la suite mais la réciproque est fausse.
Une suite (u,) peut admettre une limite sans que sa fonction associée en ait une.
Pour s’en convaincre :

f(x)=2 sixeN

Soit la fonction f définie sur R par : { f(x)=1 sinon

La limite de f en +oo n’existe manifestement pas. 2 I

La suite (u,) définie par u, = f(n) est constante et | 1 1+

lim wu, = 2. _
n—-+oo Ol " " " " >

1 2 3 4 5
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5 THEOREMES DES GENDARMES ET DE COMPARAISON

5 Théoréemes des gendarmes et de comparaison

Theoreme 3 : f, g, htrois fonctions définies sur I =|b ; +oo[ et £ un réel.
Sipour toutx € I:
Théoréme des « Gendarmes » (pour montrer une limite finie)

g(x) < f(x) < h(x) }
lim g(x)= lm h(x)=¢( —

X—r 00 X—r+00

lim f(x) =1/

X—r+00

Théorémes de comparaison (pour montrer une limite infinie)

f(x) >g(x:)+oo} f(x) <g(x) };‘XEwa(x)Z—OO

Jim g(x)=-+oo[ TR SCI=FC i (1) = oo

X——+00

Remargue : Enoncés analogues en :
e —oo avec [ =] —o0; b|
e un réel a avec I un intervalle ouvert contenant a.
Deémonstration :
1) Théoréme des gendarmes : en +oco
Si lim g(x) = lim h(x) = ¢ alors, d’apres la définition des limites finies,

X—r 400 X—r 400
tout intervalle ouvert J contenant ¢, contient toutes les valeurs de g(x) et h(x)

pour x assez grand.
Comme g(x) < f(x) < h(x) il en est de méme pour f(x).

Conclusion : xLHBOO flx)=1¢

2) Théoréme de comparaison : en +oco dans le cas ot f(x) > g(x)
Si xliTw g(x) = +oo alors d’apres la définition des limites infinies, tout inter-
valle ouvert | M ; +oo[, contient toutes les valeurs de g(x) pour x assez grand.
Comme f(x) > g(x) il en est de méme pour f(x).

Conclusion: lim f(x) = +oc0

X—>+00
Exemples :
. sin x
1) Montrer que lim =0
x—4+oco X

Pour tout réel positif x :

- 1 1
~1<sinx <1 ‘go—ggf(x)ég
1 1
or Iim ——= lim — =0

X—>+00 X X—+00 X
D’apres le théoreme des Gendarmes, on a :
lim f(x)=0 Cx

X—r—+00 -1 1
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2) Déterminer lim x + cosx 0
X—+o0

Pour tout réel x :

cosx = —1 gf x+cosx>x—1

) X + cosx

or lim x—1= 4o,
X—> 400

d’apres le théoreme de comparaison, on a :

Jim g(x) = +oo _

Y

6 Continuité

6.1 Continuité en un point

Defivition S : Soit une fonction f définie sur un intervalle ouvert I contenant

le réel a. On dit que f est continue en 4 si et seulement si : liin f(x) = f(a).
X—a

La fonction f est continue sur un intervalle I si, et seulement si, f est continue
en tout point de L.

Remargue : Graphiquement, la continuité d"une fonction f sur un intervalle I se
traduit par une courbe en « un seul morceau ».

A

L.
>

3 4 5

|
|
|
|
}
2

1 O 1 O ]

f continue sur I = [—1,5; 5, 5] f discontinue en 2 car xlggf(x) =3 #f(2)
La fonction de droite représente une disconti-
nuité par «saut ». Un autre exemple bien connu 21
est la discontinuité de la fonction partie entiére —I?al’lt
en chaque valeur entiére. " ";[H
Cependant d’autres discontinuités existent et | Y >
I'expression « en un seul morceau » n’est alors 10 Isadt 2%
pas correcte. Il faut alors revenir a la définition ]

de la limite

flx) = sin% pour x # 0
f(0) =

f n‘admet pas de limite en 0 mais l'on observe aucun
«saut ». La fonction oscille de plus en plus en 0 entre les
valeurs —1 et 1. En 0, la fonction tend vers une «oscillation
infinie » qui explique la non continuité.

Soit f définie sur R par
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6 CONTINUITE

6.2 Continuité des fonctions usuelles

On a le tableau de continuité des fonctions de référence suivant :

Fonctions usuelles

Intervalle de continuité

flx)=x", neN

R

f(X)=$,nelN* | —o0; 0[et]0;+oo]
f(x) =vx [0;+o0]
f(x) = |x| R
flx) =e R
f(x) =sinxet f(x) = cosx R

Théoréeme 4 : Continuité des fonctions usuelles (admis)

Toutes fonctions construites par somme, produit, quotient ou composition a par-
tir des fonctions de référence sont continues sur leur ensemble de définition.

- . 2 .
Exemple : La fonction x ¢«s(**+1) est continue sur R par somme et compo-
sition de fonction continues sur R.

6.3 Continuité et suite

Théoréme S : Théoréme du point fixe

Soit une suite (u,,) définie par la relation u, 11 = f(u,) convergente vers .
Si la fonction associée f est continue en ¢, alors la limite de la suite ¢ est solution
de l’équation f(x) = x.

Démonstration :

im u, =/

On sait que la suite (u,) est convergente vers ¢ donc :
n——+oo

De plus, la fonction f est continue en ¢ donc : lirr; flx)=f(£)
x—

FO) & Hm g = f(0)

n——+oo

P ition, déduit :o i u
ar composition, on en déduit que:  lim fun)

li = li d C=f(l
or lm wu, = lm u,; donc ()
Remargue : La condition de continuité de f en £ est indispensable.

Comme ¢ n’est «a priori » pas connue, on donnera en pratique 1’ensemble de
continuité de la fonction f.

Sil’équation f(x) = x admet plusieurs solutions, on encadrera ¢ pour choisir la
solution correspondante a la limite.

u0:0

3u, +4

Exemple : Soit la suite (u,) définie par {u -
e
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6.4 CONTINUITE ET DERIVABILITE

On montre par récurrence que (1, ) est positive, croissante et majorée par 4, d’apres
le théoreme des suites monotone, u, ) est convergente vers une limite /.

La fonction x — +/3x +4 est continue sur [ — Z ; +oo[ donc sur [0;4], d’apres

le théoréme du point fixe, sa limite ¢ est solution de 1’équation f(x) = x.
V3x+4=x 2 3x+4=x> = ¥*-3x—4=0 = x=-1oux=4

Comme u, > 0, la seule solution acceptable est 4. La suite (1,,) converge vers 4.

6.4 Continuité et dérivabilité

Théoreme b : Admis

e Si f est dérivable en a alors la fonction f est continue en a.

e Si f est dérivable sur un intervalle I alors la fonction f est continue sur L.

Deémonstration : Montrons que la dérivabilité en a entraine la continuité en a.

Pour x # a, posons t(x) le taux d’accroissement de la fonction f en a :

t(x) — f(x) _f(a)

X —a

S (x—a)t(x) = f(x)— f(a) = f(x) = (x—a)t(x) + f(a)

La fonction f est dérivableena: lim f(x) = f'(a) et limx—a =0
X—a X—a

donc par produit chlir}l(x —a)t(x) =0 etparsomme ]lciir}l(x— a)t(x)+ f(a) = f(a).
On a alors : chlir}z f(x) = f(a).La fonction f est continue en 4.

Remargue : La réciproque de ce théoreme est fausse. Une fonction peut étre
continue en un point 4 sans pour cela étre dérivable.

C’est le cas de la fonction valeur absolue, VA, x — |x| en 0.

e VA est continueenO:

lim |x| = lim —x =0

x—0~ x—0" A
lim |x| = lim x =0 ]
x—07F x—07*

donc lim |x| =0 = |0| 2
x—0

1 B

e VA n’est pas dérivableen 0 : pente —1 pente +1
. |x[-0 . —x 5 2 0l 1 2 3
li x| — lim - 1 3 2 1t 1 2 3
x—0- X — x—0— X
x| — 0 x La courbe est en « un seul morceau »
1i = lim = =1 et posséde un point anguleux en 0.
=0t x—0  x-0tx

Pas de limite du taux d’accroissement en 0.

PAUL MILAN 11 TERMINALE MATHS SPE


mailto:milan.paul@wanadoo.fr

6 CONTINUITE

6.5 Continuité et équation

Théoreme 1 : Théoreme des valeurs intermédiaires - Admis

Soit une fonction continue sur un intervalle I = [a, b].
Pour tout réel k compris entre f(a) et f(b), '’équation f(x) = k admet au moins
une solution ¢ dans L.

Remargue : Ce théoreme résulte du fait que
I'image d’un intervalle de R par une fonction
continue est un intervalle de R

Ci-contre, k est bien compris entre f(a) et f(b). k
L'équation f(x) = k admet donc des solutions.

L’existence de c¢ ne veut pas dire qu’il soit fO) -+ --——-
unique. Ici, il existe 3 valeurs pour c : ¢y, ¢, c3.

Théoreme 8 : Théoréeme des valeurs intermédiaires bis

Soit une fonction f continue et strictement monotone sur I = [a, b].
Pour tout réel k compris entre f(a) et f(b),’équation f(x) = k admet une unique
solution dans I

Deémonstration : Lexistence d'une solution est

montrée par le théoreme précédent. On montre
"unicité par I’absurde : supposons que 1'équation
f(x) = k admette deux solutions distinctes c; et
cp, avec ¢1 < Cp, la stricte monotonie de la fonc-
tion f entraine pour f croissante f(c1) < f(c2),
ou pour f décroissante f(c1) > f(c2), ce qui est
contradictoire avec f(c1) = f(c2) = k.

Re.MM‘%Je. :

e Ce deuxiéme théoreme est aussi appelé théoreme de la bijection. Par la suite
on appellera ce théoréme, le théoréme des valeurs intermédiaires, noté TVI.

e On généralise ce théoreme a l'intervalle ouvert I =]a, b[. Le réel k doit alors
étre compris entre lim f(x) et lim f(x)
X—a x—b

e Lorsque k = 0, on pourra montrer que f(a) x f(b) < 0.

e Un tableau de variation pourra étre suffisant pour montrer la continuité et la
monotonie de la fonction.

Exemple : Soit la fonction f définie sur R par : f(x) = x®>+ x — 1. Montrer
que l’équation f(x) = 0 n’admet qu’une solution sur R. On donnera un enca-
drement a 1'unité de cette solution. Trouver ensuite, a I’aide d'un algorithme un
encadrement a 10° de cette solution.
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6.5 CONTINUITE ET EQUATION

La fonction f est continue sur R car f est un poly-
nome.

La fonction f est la somme de deux fonctions crois-
santes x — x> et x — x — 1, donc f est strictement
croissante sur IR.

Ona f(0)=—let f(1)=1= f(0) x f(1) <O

donc d’apres le TVI, I’équation f(x) = 0 admet une
unique solution « € [0, 1].

Al 3C>V‘it‘\Me : Le principe de dichotomie consiste a divi-
ser l'intervalle en deux et a choisir la moitié de I'intervalle out
la fonction change de signe et a réitérer ce processus jusqu’a
la précision demandée.

En python Python@ on définit la fonction f puis on définit
la fonction dicho(a,b, p) o1 a et b sont les bornes de l'inter-
valle a 'unité prés ot1 se trouve la solution « et p la précision
demandée. Cette fonction renvoie alors les bornes de l'en-
cadrement ainsi que le nombre d’itérations nécessaires pour
obtenir la précision demandée.

Pour dicho(0, 1, 6), on obtient alors
a=0,682327,b = 0,682 328 et n = 20.

11 faut donc 20 itérations pour obtenir une précision de 10~°

/‘X 1.0 1.5

def

def

f(x):
return x**x3+x—1
dicho(a,b,p):
n=0
while b—a>=10%x(—p):
c=(a+b) /2
if f(a)xf(c)<0:
b=c
else:
a=c
n+=1
return a,b,n

/\ Cet algorithme ne fonctionne que si k = 0, sil’on veut généraliser cet algorithme & un réel k

quelconque, on peut :

e changer la condition f(a)* f(c) <0 en (f(a) —k) x (f(c)—k) > 0

e au lieu de rentrer la fonction f, rentrer la fonction f — k.

D’autres méthodes existent pour déterminer la racine « plus rapidement comme l’algorithme
Newton-Raphson ou la méthode de la sécante qui feront 1’objet d’exercices.
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