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Limites de fonctions et continuité
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1 LIMITE FINIE OU INFINIE À L’INFINI

1 Limite finie ou infinie à l’infini

1.1 Limite finie à l’infini

Définition 1 : Une fonction f a pour

limite ℓ en +∞, si tout intervalle ouvert
contenant ℓ, contient toutes les valeurs
de f (x) pour x assez grand - c’est à dire
pour x ∈]A;+∞[. On note alors :

lim
x→+∞

f (x) = ℓ

ℓ

A
xO

C f

∆

La droite ∆ d’équation y = ℓ est dite asymptote horizontale à C f .

On définit de façon analogue lim
x→−∞

f (x) = ℓ avec x ∈]− ∞ ; B[.

Remarque : Aussi petit que soit l’intervalle contenant ℓ, il faut pouvoir trouver A.

Exemple : x 7→ 1
x

, x 7→ 1
xn

, n ∈ N
∗ et x 7→ 1√

x
ont des limites nulles en +∞.

x 7→ ex a pour limite 0 en −∞.

Leurs courbes admettent alors la droite d’équation y = 0 (l’axe des abscisses)
comme asymptote horizontale.

1.2 Limite infinie à l’infini

Définition 2 : Une fonction f a

pour limite +∞ en +∞, si tout inter-
valle ]M;+∞| contient toutes les va-
leurs de f (x) pour x assez grand - c’est
à dire pour x ∈]A;+∞[. On note alors :

lim
x→+∞

f (x) = +∞ A
]

M

]

C f

O

On définit de façon analogue :

lim
x→−∞

f (x) = +∞ de ]M ; +∞[ vers ]− ∞ ; B[

lim
x→+∞

f (x) = −∞ de ]− ∞ ; m[ vers ]A ; +∞[

lim
x→−∞

f (x) = −∞ de ]− ∞ ; m[ vers ]− ∞ ; B[

Remarque : Aussi grand que soit M, il faut pouvoir trouver A.

Exemple : x 7→ xn, n ∈ N
∗, x 7→ √

x et x 7→ ex ont pour limite +∞ en +∞.

x 7→ xn a pour limite +∞ en −∞ si n est pair et −∞ en −∞ si n est impair.
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1.3 LIMITES EN L’INFINI DES FONCTIONS DE RÉFÉRENCE

Une fonction peut tendre vers +∞ en +∞

de plusieurs façons. C’est le cas par exemple
des fonctions x 7→ x2, x 7→ x et x 7→ √

x.

• x 7→ x2 tend « rapidement » vers l’infini.
La concavité est tournée vers le haut.

• x 7→ x tend « moyennement » vers l’infini.
Pas de concavité.

• x 7→ √
x tend « lentement » vers l’infini.

La concavité est tournée vers le bas

Trois façons de
tendre vers +∞

√
x

x

x2

O

1.3 Limites en l’infini des fonctions de référence

f (x) xn 1
xn

√
x 1√

x
ex eax

lim
x→+∞

f (x) +∞ 0 +∞ 0 +∞
+∞ a > 0

0 a < 0

lim
x→−∞

f (x)
+∞ n pair

−∞ n impair
0

non
défini

non
défini

0
0 a > 0

+∞ a < 0

2 Limite en un point

2.1 Limite infinie en un point

Définition 3 : Une fonction f a pour limite

+∞ en a, si tout intervalle ]M;+∞| contient
toutes les valeurs de f (x) pour x assez proche de
a - c’est à dire pour les x d’un intervalle ouvert
contenant a. On note alors :

lim
x→a

f (x) = +∞

La droite ∆ d’équation x = a est dite asymptote
verticale à C f

On définit de façon analogue lim
x→a

f (x) = −∞ a
[]

C f
M

]

O

∆

On définit la limite à gauche ou à droite de x = a
lorsque la limite en x = a n’existe pas :

limite à gauche : lim
x→a
x<a

f (x) ou lim
x→a−

f (x)

limite à droite : lim
x→a
x>a

f (x) ou lim
x→a+

f (x)

La fonction x 7→ 1
x

n’admet pas de limite en 0,

mais admet une limite à gauche et à droite de 0.

O

limite
à droite

Limite
à gauche
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3 OPÉRATIONS SUR LES LIMITES

2.2 Limites en 0 des fonctions élémentaires

f (x) 1
xn

1√
x

lim
x→0+

f (x) +∞ +∞

lim
x→0−

f (x)
+∞ n pair
−∞ n impair non défini

2.3 Limite finie en un point

Définition 4 : Une fonction f a pour

limite ℓ en a, si que tout intervalle ou-
vert contenant ℓ contient toutes les va-
leurs de f (x) pour x assez proche de a.
On note alors :

lim
x→a

f (x) = ℓ

[]

]
[

ℓ

a

C f

O

bC

Exemple : lim
x→2

x2 − 1 = 3.

Une fonction peut ne pas être définie et
admettre une limite en a.

Par exemple la fonction x 7→ ex − 1
x

n’est pas définie en 0 mais :

lim
x→0

ex − 1
x

= 1

Taux d’accroissement de exp en 0. 1 2 3−1−2−3

1

2

3

4

5

6

bc

O

f (x) =
ex − 1

x

Remarque : Parfois la fonction f n’admet pas une li-
mite en a, mais admet une limite à droite et une limite à
gauche. C’est le cas de la fonction partie entière E. On a
par exemple : lim

x→2−
E(x) = 1 et lim

x→2+
E(x) = 2 1 2 3−1

−1

1

2

b [

b [

b [

b [

O

3 Opérations sur les limites

Soit f et g deux fonctions et a un réel ou ±∞. On note F.I. une forme indéterminée

3.1 Somme de fonctions

lim
x→a

f (x) ℓ ℓ ℓ +∞ −∞ +∞

lim
x→a

g(x) ℓ′ +∞ −∞ +∞ −∞ −∞

lim
x→a

[ f (x) + g(x)] ℓ+ ℓ′ +∞ −∞ +∞ −∞ F.I.
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3.2 PRODUIT DE FONCTIONS

Exemples :
1) Limite en +∞ de la fonction f définie sur R

∗ par : f (x) = x + 3 +
1
x

lim
x→+∞

x + 3 = +∞

lim
x→+∞

1
x
= 0











Par somme
lim

x→+∞
f (x) = +∞

2) Limite en +∞ et −∞ de la fonction f définie sur R par : f (x) = x2 + x

lim
x→+∞

x2 = +∞

lim
x→+∞

x = +∞







Par somme
lim

x→+∞
f (x) = +∞

lim
x→−∞

x2 = +∞

lim
x→−∞

x = −∞







Par somme, on ne peut conclure
Forme indéterminée : +∞ − ∞

3.2 Produit de fonctions

lim
x→a

f (x) ℓ ℓ 6= 0 0 ∞

lim
x→a

g(x) ℓ′ ∞ ∞ ∞

lim
x→a

f (x)×g(x) ℓ× ℓ′ ∞* F.I. ∞*

*Appliquer la règle des signes

Exemples :
1) Limite en −∞ de la fonction précédente : f (x) = x2 + x

Pour lever la forme indéterminée, on factorise f (x) par le terme prédominant :

f (x) = x2 + x = x2
(

1 +
1
x

)

On a alors avec le produit :
lim

x→−∞
x2 = +∞

lim
x→−∞

1 +
1
x
= 1











Par produit
lim

x→−∞
f (x) = +∞

2) Limite en +∞ de la fonction définie sur R+ par : f (x) = x −√
x

Forme indéterminée, on factorise f (x) par le terme prédominant :

f (x) = x −
√

x = x

(

1 − 1√
x

)

lim
x→+∞

x = +∞

lim
x→+∞

1 − 1√
x
= 1











Par produit
lim

x→+∞
f (x) = +∞

3) Limite à droite de 0 de la fonction définie sur R
∗ par : f (x) =

1
x

sin x

lim
x→0
x>0

1
x
= +∞

lim
x→0
x>0

sin x = 0



















Par produit, on ne peut conclure

Forme indéterminée 0 × ∞
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3 OPÉRATIONS SUR LES LIMITES

3.3 Quotient de fonctions

lim
x→a

f (x) ℓ ℓ 6= 0 0 ℓ ∞ ∞

lim
x→a

g(x) ℓ′ 6= 0 0 (1) 0 ∞ ℓ′ (1)
∞

lim
x→a

f (x)

g(x)

ℓ

ℓ′
∞* F.I. 0 ∞* F.I.

*Appliquer la règle des signes (1) doit avoir un signe constant

Exemples :

1) Limite en −2 de la fonction définie sur R − {−2} par : f (x) =
2x − 1
x + 2

On détermine le signe de x + 2 : x

x + 2
−∞ −2 +∞

− 0 +

lim
x→−2

2x − 1 = −5

lim
x→−2+

x + 2 = 0+

lim
x→−2−

x + 2 = 0−























Par quotient
lim

x→−2+
f (x) = −∞

lim
x→−2−

f (x) = +∞

On en déduit alors une asymptote verticale d’équation x = −2.

2) Limite en +∞ de la fonction f définie par : f (x) =
2x + 1
3x + 2

Forme indéterminée :
∞

∞
. On factorise numérateur et dénominateur par le

terme prépondérant :

f (x) =
2x + 1
3x + 2

=

x

(

2 +
1
x

)

x

(

3 +
2
x

) =
2 +

1
x

3 +
2
x

On obtient alors :
lim

x→+∞
2 +

1
x
= 2

lim
x→+∞

3 +
2
x
= 3















Par quotient

lim
x→+∞

f (x) =
2
3

3.4 Conclusion

Il existe quatre formes indéterminées où les opérations sur les limites ne per-
mettent pas de conclure. Dans les cas d’indétermination, on peut :
• mettre en facteur le terme prépondérant (pour les polynômes et les fonctions

rationnelles) en l’infini,
• simplifier pour la forme zéro sur zéro en un point,
• multiplier par la quantité conjuguée (pour les fonctions irrationnelles),
• utiliser un théorème de comparaison,
• effectuer un changement de variable . . .
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4 Limite d’une fonction composée

Théorème 1 : Soit deux fonctions f , g et a, b, c des réels ou ±∞.

lim
x→a

f (x) = b

lim
x→b

g(x) = c







⇒ lim
x→a

g [ f (x)] = c

Exemples : Déterminer les limites suivantes :

1) lim
x→+∞

cos
(

1
x2 + 1

)

:
lim

x→+∞

1
x2 + 1

= 0

lim
x→0

cos x = 1











Par composition, on a :

lim
x→+∞

cos
(

1
x2 + 1

)

= 1

2) lim
x→0−

e
1
x :

lim
x→0−

1
x
= −∞

lim
x→−∞

ex = 0















Par composition, on a :

lim
x→0−

e
1
x = 0

On peut éventuellement faire un changement de variable en posant X =
1
x

:

lim
x→0−

e
1
x = lim

X→−∞

eX = 1

Théorème 2 : Limites de fonctions et de suites

Soit une suite (un) définie par : un = f (n). f est alors la fonction réelle associée à
la suite (un). Soit a un réel ou ±∞.

lim
x→+∞

f (x) = a ⇒ lim
n→+∞

un = a

Exemple : Soit la suite (un) définie pour tout n ∈ N
∗ par : un =

√

2 +
1
n2 .

Soit f la fonction définie sur ]0;+∞[ par : f (x) =

√

2 +
1
x2 .

lim
x→+∞

2 +
1
x2 = 2

lim
x→2

√
x =

√
2











Par composition

lim
x→+∞

f (x) =
√

2
⇒ lim

n→+∞
un =

√
2

Remarque : La limite de f est transmise à la suite mais la réciproque est fausse.
Une suite (un) peut admettre une limite sans que sa fonction associée en ait une.
Pour s’en convaincre :

Soit la fonction f définie sur R par :

{

f (x) = 2 si x ∈ N

f (x) = 1 sinon

La limite de f en +∞ n’existe manifestement pas.
La suite (un) définie par un = f (n) est constante et

lim
n→+∞

un = 2.
1 2 3 4 5

1

2 b b b b b b

] [] [] [] [] [

O
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5 THÉORÈMES DES GENDARMES ET DE COMPARAISON

5 Théorèmes des gendarmes et de comparaison

Théorème 3 : f , g, h trois fonctions définies sur I =]b ;+∞[ et ℓ un réel.

Si pour tout x ∈ I :

Théorème des « Gendarmes » (pour montrer une limite finie)

g(x) 6 f (x) 6 h(x)

lim
x→+∞

g(x) = lim
x→+∞

h(x) = ℓ

}

⇒ lim
x→+∞

f (x) = ℓ

Théorèmes de comparaison (pour montrer une limite infinie)

f (x) > g(x)

lim
x→+∞

g(x)=+∞

}

⇒ lim
x→+∞

f (x)=+∞

f (x) 6 g(x)

lim
x→+∞

g(x)=−∞

}

⇒ lim
x→+∞

f (x)=−∞

Remarque : Énoncés analogues en :
• −∞ avec I =]− ∞ ; b[

• un réel a avec I un intervalle ouvert contenant a.

Démonstration :
1) Théorème des gendarmes : en +∞

Si lim
x→+∞

g(x) = lim
x→+∞

h(x) = ℓ alors, d’après la définition des limites finies,

tout intervalle ouvert J contenant ℓ, contient toutes les valeurs de g(x) et h(x)
pour x assez grand.

Comme g(x) 6 f (x) 6 h(x) il en est de même pour f (x).

Conclusion : lim
x→+∞

f (x) = ℓ

2) Théorème de comparaison : en +∞ dans le cas où f (x) > g(x)

Si lim
x→+∞

g(x) = +∞ alors d’après la définition des limites infinies, tout inter-

valle ouvert ]M ;+∞[, contient toutes les valeurs de g(x) pour x assez grand.

Comme f (x) > g(x) il en est de même pour f (x).

Conclusion : lim
x→+∞

f (x) = +∞

Exemples :

1) Montrer que lim
x→+∞

sin x

x
= 0

Pour tout réel positif x :

−1 6 sin x 6 1 ÷x>0⇔ −1
x
6 f (x) 6

1
x

or lim
x→+∞

−1
x
= lim

x→+∞

1
x
= 0

D’après le théorème des Gendarmes, on a :

lim
x→+∞

f (x) = 0
−1

1 1
x

− 1
x

sin x

x

O
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2) Déterminer lim
x→+∞

x + cos x

Pour tout réel x :

cos x > −1 +x⇔ x + cos x > x − 1

or lim
x→+∞

x − 1 = +∞,

d’après le théorème de comparaison, on a :
lim

x→+∞
g(x) = +∞

x + cos x y = x − 1

O

6 Continuité

6.1 Continuité en un point

Définition 5 : Soit une fonction f définie sur un intervalle ouvert I contenant

le réel a. On dit que f est continue en a si et seulement si : lim
x→a

f (x) = f (a).

La fonction f est continue sur un intervalle I si, et seulement si, f est continue
en tout point de I.

Remarque : Graphiquement, la continuité d’une fonction f sur un intervalle I se
traduit par une courbe en « un seul morceau ».

1 2 3 4 5−1

1

2

3 C f

O

f continue sur I = [−1, 5 ; 5, 5]

1 2 3 4 5−1

1

2

3

b

] C f

saut

O

f discontinue en 2 car lim
x→2+

f (x) = 3 6= f (2)

La fonction de droite représente une disconti-
nuité par « saut ». Un autre exemple bien connu
est la discontinuité de la fonction partie entière
en chaque valeur entière.
Cependant d’autres discontinuités existent et
l’expression « en un seul morceau » n’est alors
pas correcte. Il faut alors revenir à la définition
de la limite

1 2 3−1

−1

1

2

b [

b [

b [

b [

O saut

saut

saut

Soit f définie sur R par







f (x) = sin
1
x

pour x 6= 0

f (0) = 0

f n’admet pas de limite en 0 mais l’on observe aucun
« saut ». La fonction oscille de plus en plus en 0 entre les
valeurs −1 et 1. En 0, la fonction tend vers une « oscillation
infinie » qui explique la non continuité.

b

1−1

−1

1

O
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6 CONTINUITÉ

6.2 Continuité des fonctions usuelles

On a le tableau de continuité des fonctions de référence suivant :

Fonctions usuelles Intervalle de continuité

f (x) = xn, n ∈ N R

f (x) =
1
xn

, n ∈ N
∗ ]− ∞ ; 0[ et ]0 ;+∞[

f (x) =
√

x [0 ;+∞[

f (x) = |x| R

f (x) = ex
R

f (x) = sin x et f (x) = cos x R

Théorème 4 : Continuité des fonctions usuelles (admis)

Toutes fonctions construites par somme, produit, quotient ou composition à par-
tir des fonctions de référence sont continues sur leur ensemble de définition.

Exemple : La fonction x 7→ ecos(x2+1) est continue sur R par somme et compo-
sition de fonction continues sur R.

6.3 Continuité et suite

Théorème 5 : Théorème du point fixe

Soit une suite (un) définie par la relation un+1 = f (un) convergente vers ℓ.
Si la fonction associée f est continue en ℓ, alors la limite de la suite ℓ est solution
de l’équation f (x) = x.

Démonstration :

On sait que la suite (un) est convergente vers ℓ donc : lim
n→+∞

un = ℓ

De plus, la fonction f est continue en ℓ donc : lim
x→ℓ

f (x) = f (ℓ)

Par composition, on en déduit que : lim
n→+∞

f (un) = f (ℓ) ⇔ lim
n→+∞

un+1 = f (ℓ)

or lim
n→+∞

un = lim
n→+∞

un+1 donc ℓ = f (ℓ)

Remarque : La condition de continuité de f en ℓ est indispensable.
Comme ℓ n’est « a priori » pas connue, on donnera en pratique l’ensemble de
continuité de la fonction f .
Si l’équation f (x) = x admet plusieurs solutions, on encadrera ℓ pour choisir la
solution correspondante à la limite.

Exemple : Soit la suite (un) définie par

{

u0 = 0

un+1 =
√

3un + 4
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6.4 CONTINUITÉ ET DÉRIVABILITÉ

On montre par récurrence que (un) est positive, croissante et majorée par 4, d’après
le théorème des suites monotone, un) est convergente vers une limite ℓ.

La fonction x 7→
√

3x + 4 est continue sur
[

− 3
4

; +∞

[

donc sur [0; 4], d’après

le théorème du point fixe, sa limite ℓ est solution de l’équation f (x) = x.

√
3x + 4 = x

↑2⇒ 3x + 4 = x2 ⇒ x2 − 3x − 4 = 0 ⇒ x = −1 ou x = 4

Comme un > 0, la seule solution acceptable est 4. La suite (un) converge vers 4.

6.4 Continuité et dérivabilité

Théorème 6 : Admis

• Si f est dérivable en a alors la fonction f est continue en a.

• Si f est dérivable sur un intervalle I alors la fonction f est continue sur I.

Démonstration : Montrons que la dérivabilité en a entraîne la continuité en a.

Pour x 6= a, posons t(x) le taux d’accroissement de la fonction f en a :

t(x) =
f (x)− f (a)

x − a
⇒ (x− a)t(x) = f (x)− f (a) ⇒ f (x) = (x− a)t(x)+ f (a)

La fonction f est dérivable en a : lim
x→a

t(x) = f ′(a) et lim
x→a

x − a = 0

donc par produit lim
x→a

(x− a)t(x) = 0 et par somme lim
x→a

(x− a)t(x)+ f (a) = f (a).

On a alors : lim
x→a

f (x) = f (a). La fonction f est continue en a.

Remarque : La réciproque de ce théorème est fausse. Une fonction peut être
continue en un point a sans pour cela être dérivable.

C’est le cas de la fonction valeur absolue, VA, x 7→ |x| en 0.

• VA est continue en 0 :






lim
x→0−

|x| = lim
x→0−

−x = 0

lim
x→0+

|x| = lim
x→0+

x = 0

donc lim
x→0

|x| = 0 = |0|

• VA n’est pas dérivable en 0 :














lim
x→0−

|x| − 0
x − 0

= lim
x→0−

−x

x
= −1

lim
x→0+

|x| − 0
x − 0

= lim
x→0+

x

x
= 1

Pas de limite du taux d’accroissement en 0.

1 2 3−1−2−3
1

1

2

3

O

pente +1pente −1

La courbe est en « un seul morceau »
et possède un point anguleux en 0.
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6 CONTINUITÉ

6.5 Continuité et équation

Théorème 7 : Théorème des valeurs intermédiaires - Admis

Soit une fonction continue sur un intervalle I = [a, b].
Pour tout réel k compris entre f (a) et f (b), l’équation f (x) = k admet au moins
une solution c dans I.

Remarque : Ce théorème résulte du fait que
l’image d’un intervalle de R par une fonction
continue est un intervalle de R

Ci-contre, k est bien compris entre f (a) et f (b).
L’équation f (x) = k admet donc des solutions.

L’existence de c ne veut pas dire qu’il soit
unique. Ici, il existe 3 valeurs pour c : c1, c2, c3. a b

f (a)

f (b)

k

c1 c2 c3O

Théorème 8 : Théorème des valeurs intermédiaires bis

Soit une fonction f continue et strictement monotone sur I = [a, b].
Pour tout réel k compris entre f (a) et f (b), l’équation f (x) = k admet une unique
solution dans I

Démonstration : L’existence d’une solution est
montrée par le théorème précédent. On montre
l’unicité par l’absurde : supposons que l’équation
f (x) = k admette deux solutions distinctes c1 et
c2, avec c1 < c2, la stricte monotonie de la fonc-
tion f entraîne pour f croissante f (c1) < f (c2),
ou pour f décroissante f (c1) > f (c2), ce qui est
contradictoire avec f (c1) = f (c2) = k. a b

f (a)

f (b)

k

cO

Remarque :

• Ce deuxième théorème est aussi appelé théorème de la bijection. Par la suite
on appellera ce théorème, le théorème des valeurs intermédiaires, noté TVI.

• On généralise ce théorème à l’intervalle ouvert I =]a, b[. Le réel k doit alors
être compris entre lim

x→a
f (x) et lim

x→b
f (x)

• Lorsque k = 0, on pourra montrer que f (a)× f (b) < 0.

• Un tableau de variation pourra être suffisant pour montrer la continuité et la
monotonie de la fonction.

Exemple : Soit la fonction f définie sur R par : f (x) = x3 + x − 1. Montrer
que l’équation f (x) = 0 n’admet qu’une solution sur R. On donnera un enca-
drement à l’unité de cette solution. Trouver ensuite, à l’aide d’un algorithme un
encadrement à 10−6 de cette solution.
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6.5 CONTINUITÉ ET ÉQUATION

La fonction f est continue sur R car f est un poly-
nôme.

La fonction f est la somme de deux fonctions crois-
santes x 7→ x3 et x 7→ x − 1, donc f est strictement
croissante sur R.

On a f (0)=−1 et f (1)=1 ⇒ f (0)× f (1) < 0

donc d’après le TVI, l’équation f (x) = 0 admet une
unique solution α ∈ [0, 1].

0.5 1.0 1.5

−1

1

2

3

O α

Algorithme : Le principe de dichotomie consiste à divi-
ser l’intervalle en deux et à choisir la moitié de l’intervalle où
la fonction change de signe et à réitérer ce processus jusqu’à
la précision demandée.

En python Python on définit la fonction f puis on définit
la fonction dicho(a,b, p) où a et b sont les bornes de l’inter-
valle à l’unité prés où se trouve la solution α et p la précision
demandée. Cette fonction renvoie alors les bornes de l’en-
cadrement ainsi que le nombre d’itérations nécessaires pour
obtenir la précision demandée.

Pour dicho(0 , 1, 6), on obtient alors
a = 0,682 327, b = 0,682 328 et n = 20.
Il faut donc 20 itérations pour obtenir une précision de 10−6

def f ( x ) :
return x∗∗3+x−1

def dicho ( a , b , p ) :
n=0
while b−a>=10∗∗(−p ) :

c =( a+b ) /2
i f f ( a ) ∗ f ( c ) <0:

b=c
else :

a=c
n+=1

return a , b , n

B Cet algorithme ne fonctionne que si k = 0, si l’on veut généraliser cet algorithme à un réel k
quelconque, on peut :

• changer la condition f (a) ∗ f (c) < 0 en ( f (a)− k)× ( f (c)− k) > 0

• au lieu de rentrer la fonction f , rentrer la fonction f − k.

D’autres méthodes existent pour déterminer la racine α plus rapidement comme l’algorithme
Newton-Raphson ou la méthode de la sécante qui feront l’objet d’exercices.
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